
3.3. Second order transient circuits 

In the previous chapter we considered circuits with a single storage element (a capacitor or an 

inductor). Such circuits are first-order because the differential equations describing them are 

first-order. In this chapter we will consider circuits containing two storage elements. These 

are known as second-order circuits because their responses are described by differential 

equations that contain second derivatives. Typical examples of second-order circuits are RLC 

circuits, in which the three kinds of passive elements are present. 

 

    

 

 

 

 

 

 

 

 

 

 

Generally, second-order circuit may have two storage elements of different type or the same 

type (provided elements of the same type cannot be represented by an equivalent single 

element). 

A second-order circuit is characterized by a second-order differential equation. It consists of 

resistors and the equivalent of two energy storage elements.  Given a second-order circuit, we 

can determine its step response x(t) (which may be voltage or current) by taking the 

following four steps: 

1. We first determine the initial conditions      and           and the final 

value     . 

There are two key points to keep in mind in determining the initial conditions. 

a. First-as always in circuit analysis—we must carefully handle the polarity of voltage 

v(t) across the capacitor and the direction of the current i(t) through the inductor. 

b. The capacitor voltage and the inductor current are always continuous so that, 

            and so that,             respectively.  



Where       
 denotes the time just before a switching event and       

 is the time just 

after the switching event, assuming that the switching event takes place at t = 0. Thus, in 

finding initial conditions, we first focus on those variables that cannot change abruptly, 

capacitor voltage and inductor current. 

Exercise 3.1 

The switch in Fig. 1 has been closed for a long time. It is open at t = 0. Find: (a)              

(b)                                    

 

 

Figure 1 

2. We find the natural response        by turning off independent Sources and 

applying KCL and KVL.  

 

a) Source-free series RLC circuit 

The circuit is being excited by the energy initially stored in the capacitor and inductor. The 

energy is represented by the initial capacitor voltage    and initial inductor current   . Thus, 

at t = 0, 

 

 

 

 

 

 

Differentiating both side 

 

 

 

 

 

or Applying KVL around the loop 



 

 

 

 

 

 

Represent series RLC circuit 

To solve such a second-order differential equation requires that we have two initial 

conditions, such as the initial value of i and its first derivative. 

 

 

 

 

 

 With the two initial conditions it possible for solving SODE 

 

 

From first-order circuits suggests that the solution is of exponential form. So we let 

i(t)= Ae
st
 

Where A and s are constants to be determined. 

 

 

 

 

 

 

 

Since i(t)= Ae
st
 is the assumed solution we are trying to find, only the expression in 

parentheses can be zero: 

 

 

This quadratic equation is known as the characteristic equation of the given SODE and the 

solution of characteristic equation given by  

 



 

 

A more compact way of expressing the roots is 

 

 

Where, 

 

The roots S1 and S2 are called natural frequencies, measured in nepers per second (Np/s), 

because they are associated with the natural response of the circuit; ω0 is known as the 

resonant frequency or strictly as the undamped natural frequency, expressed in radians per 

second (rad/s); and α is the neper frequency or the damping factor, expressed in nepers per 

second. 

 In terms of ω0 and α 

 

 

 

The two values of s indicate that there are two possible solutions for i, each of which is of the 

form of the assumed solution  

 

 

Since                                             is a linear equation, any linear combination of the two 

distinct solutions and is also a solution of DE. A complete or total solution of DE would 

therefore require a linear combination of i1 and i2. Thus, the natural response of the series 

RLC circuit is 

 

Where A1 and A2 the constants and are determined from the initial values                   

 We can infer that there are three types of solutions: 

1. If α > ω0  we have the over damped case. 

2. If α= ω0 we have the critically damped case. 

3. If α < ω0 we have the under damped case. 

 

 

 

 



I. If α > ω0 we have the over damped case. 

 α > ω0 implies C > 4L/ R
2
. When this happens, both roots S1 and S2 are negative and real. 

The response is  

 

This indicates source free response decays and approaches to zero as t increases. Typical over 

damped response is illustrated as follows.  

 

 

 

 

 

 

II. If α= ω0 we have the critically damped case. 

 α > ω0 implies C = 4L/ R
2
. Then S1 = S2 = - α = -R/2L 

For this case   

 

Where A3 =A1 +A2. This cannot be the solution, because the two initial conditions cannot be 

satisfied with the single constant. So, our assumption of an exponential solution is incorrect 

for the special case of critical damping. 

 

 

 

 

 

 

 

 

 

 

 

 

Hence, the natural response of the critically damped circuit is a sum of two terms: a negative 

exponential and a negative exponential multiplied by a linear term. 

 



III. If α < ω0 we have the under damped case. 

 α < ω0 implies C < 4L/ R
2
. The roots may be written as 

 

or  

 

 

 

 

 

Using Euler’s identities, 

 

 

 

 

 With the presence of sine and cosine functions, it is clear that the natural response for 

this case is exponentially damped and oscillatory in nature. 

 

 

 

 

 

 

 

 

The waveforms of the responses for critically damped case and under damped case. 

 The damping effect is due to the presence of resistance R. The damping factor 

determines the rate at which the response is damped. 

 Oscillatory response is possible due to the presence of the two types of storage elements. 

Having both L and C allows the flow of energy back and forth between the two. The 

damped oscillation exhibited by the under damped response is known as ringing. It stems 

from the ability of the storage elements L and C to transfer energy back and forth between 

them. 

 The critically damped case is the borderline between the under damped and 

over damped cases and it decays the fastest. 



 Both     and    are natural frequencies because they help determine the natural response; 

   is often called the undamped natural frequency and ωd is called the damped natural 

frequency. 

Example 1 If R= 50 Ω, L=1.5 H, what value of C will make an RLC series circuit: 

a. Over damped, 

b. critically damped 

c. Under damped? 

Example 2 The switch in Fig. bellow moves from position A to position B. find v(t) 

for t>0. 

 
 

 

 

 

Exercise: For the circuit shown below, Find i(t) for all t >0. 

 

 

 

 

 

 

 

b). the Source-Free Parallel RLC Circuit 

Parallel RLC circuits find many practical applications, notably in communications networks 

and filter designs. Consider the parallel RLC the circuit is excited by the energy initially 

stored in capacitor and inductor. The energy represented by initial capacitor Voltage Vo and 

initial inductor current Io. 

 

 

 

 

 

Because the three elements are in parallel, they have the same voltage v across them. 

According to passive sign convention, the current is entering each element; that is, the current 

through each element is leaving the top node. Thus, applying KCL at the top node gives  



 

Taking the derivative with respect to t and dividing by C results in 

 

 

To find the initial conditions  

 

 

 

 

 

 

Or from KCL                    iR + iL + iC =0 

 

 

 

 

 

 

We obtain the characteristic equation by replacing the first derivative by s and the second 

derivative by s
2
. 

 

The roots of the characteristic equation are 

 

 

In a compact way  

 

 

 

From                                                                                            we can infer that there are 

three types of solutions. 

I. If α > ω0 we have the over damped case. 

 α > ω0 implies L > 4CR
2
. When this happens, both roots S1 and S2 are negative and real. 

The response is  

 



II. If α= ω0 we have the critically damped case. 

α = ω0 implies L = 4CR
2
. Then S1 = S2 = - α = -1/2RC 

 

III. If α < ω0 we have the under damped case. 

 α < ω0 implies L = 4CR
2
. The roots may be written as 

 

or  

 

The response is 

 

Example 3: Find the voltage across the capacitor as a function of time for the circuit shown 

below. Assume steady-state conditions exist at t= 0-. 

 

 

 

 

 

 

 

 

c. Step Response of a Series RLC Circuit 

 The step response is obtained by the sudden application of a dc source. Consider the 

series RLC circuit shown in figure bellow. Applying KVL around the loop for t>0 ,  

 

 

 

 

 

 

or 

 

 

  

 



 The solution to SODE has two components: the transient response and the steady-

state response  

 

The transient response is the component of the total response that dies out with time.  

 

 

 

 

 The steady-state response is the final value of v(t). For series RLC circuit, the final 

value of the capacitor voltage is the same as the source voltage. Hence, 

 

 

Thus, the complete solutions for the over damped, under damped, and critically damped cases 

are:  

 

 

 

The values of the constants A1 and A2 are obtained from the initial conditions: v(0) and 

dv(0)∕dt. Keep in mind that v and i are, respectively, the voltage across the capacitor and the 

current through the inductor. 

But once the capacitor voltage vc = v is known, we can determine i = Cdv∕dt, which is the 

same current through the capacitor, inductor, and resistor. Hence, the voltage across the 

resistor is vR = iR, while the inductor voltage is VL = Ldi∕dt. 

Example 4: Find the voltage across the capacitor as a function of time for the circuit shown 

below. Assume steady-state conditions exist at t= 0-. If R= 5 ohms    

 

 

 

 

 

 

  

 



d. Step Response of a Parallel RLC Circuit 

 Consider the parallel RLC circuit shown in figure bellow. We want to find i(t) due to 

a sudden application of a dc current. Applying KCL at the top node for t >0.  

  

 

 

 

 

 

Or  

 

 

  

 

The complete solution of parallel RLC has two components: the transient response and the 

steady-state response 

 

The transient response is the same as what we had in source free parallel RLC   

  

 

 

 

The steady-state response is the final value of i. In the circuit in step response of parallel 

RLC, the final value of the current through the inductor is the same as the source current Is. 

Thus, 

  

 

 

Example 5: For the circuit shown below, find i(t) and i
R 
(t) for t >0. 

 

  

  


